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Circularly polarized light emission in scanning tunneling microscopy of magnetic systems
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Light is produced when a scanning tunneling microscope is used to probe a metal surface. Recent experi-
ments on cobalt utilizing a tungsten tip found that the light is circularly polarized; the sense of circular
polarization depends on the direction of the sample magnetization, and the degree of polarization is of order
10%. This raises the possibility of constructing a magnetic microscope with very good spatial resolution. We
present a theory of this effect for iron and cobalt and find a degree of polarization of order 0.1%. This is in
disagreement with the experiments on cobalt as well as previous theoretical work which found order of
magnitude agreement with the experimental results. However, a recent experiment on iron showed 0.0
62%. We predict that the use of a silver tip would increase the degree of circular polarization for a range of
photon energies.
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I. INTRODUCTION

The last ten years have seen a rapid development of
field of magnetic dichroism, especially where the respons
a system to left and right circularly polarized light is probe
so called circular dichroism.1 For a magnetic material this i
magnetic circular dichroism~MCD!. Experiments involve
x-ray absorption,2 as well as standard photoemissio
techniques.3

The possibility of a method of microscopic measureme
of surface magnetism has been suggested by a re
experiment.4 In this experiment, circularly polarized ligh
emitted from a scanning tunneling microscope~STM! was
observed when the surface of a ferromagnetic material~Co!
was probed with a W tip in a longitudinal configuration~see
Fig. 1, the applied magnetic field is parallel to both the s
face plane and to the plane of light detection!. The handed-
ness of the circular polarization was found to depend on
direction of the applied field and the degree of polarizat
was between 5 and 10 %. The results of Va´zques de Parga
and Alvarado4 looks, at first sight, to have been corroborat
by the theoretical work of Majliset al.5 In principle such an
effect, if confirmed, should make it possible to map the m
netic microstructure of a surface by measuring the circu
polarization of the emitted light while scanning the surfa
because a STM tip provides very good spatial resolutio6

However, a more recent experiment of this type, by Pie
et al.7 carried out on Fe with a W tip, found 0.062% circu-
lar polarization.

In this paper we calculate the degree of circular polari
tion for Fe and Co. We find two contributions to the circul
polarization. The first is due to the Kerr rotation of the lig
emitted in the tunneling process. The second contributio
due to the polarization of the scanning tip by the electric fi
of the emitted light. The polarized tip radiates and the rad
PRB 610163-1829/2000/61~5!/3534~12!/$15.00
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tion undergoes a Kerr rotation. This second contribution
pends on the polarizability of the tip as well as the dielect
properties of the sample and can be significantly larger t
the first contribution.

We obtain results which are between one and two ord
of magnitude smaller than that measured by Va´zques de
Parga and Alvarado4 but consistent with the measuremen
of Pierceet al.7 Both workers used W tips, but we find tha
for a Ag tip, Co and Fe produce a larger degree of circu
polarization for a range of photon energies.

There are other sources of circular polarization that
not magnetic in origin. For example, experiments
Vázques de Parga and Alvarado8 and theory by Anisimovas

FIG. 1. The schematic experimental set-up in the experiment
Vázques de Parga and Alvarado~Ref. 4! and Pierceet al. ~Ref. 7!
showing the relative orientation of the applied magnetic field~M ! in
the plane of the Co~0001!/Fe~001! surface (x,y plane!, tungsten tip
orientation, and optical detection axis. With the help of the so ca
reciprocity theorem@Eq. ~4!# one can relate the field intensity at th
detector due to a current at the tip@ET ~detector!# to the ‘‘detector-
generated’’ field intensity between tip and sample (ED). The latter
is easier to construct and hence makes it rather straightforwar

find the field we are most interested in; the one in the tip regionŝ
(5 x̂) and p̂ denote two orthogonal polarization directions at t
detector.
3534 ©2000 The American Physical Society
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and Johansson9 show that an asymmetric STM tip can pr
duce a degree of circular polarization on the order of 10

In Sec. II we develop a theory for the degree of circu
polarization produced by an STM tip in the presence o
magnetic sample based on the magneto-optic Kerr effec
order to understand the physics of the magnetic circular
chroism in these experiments the tip is modeled by a dip
The purpose of the dipole model is solely to help to und
stand the physics and is introduced mainly for pedagog
reasons. In Sec. III the theoretical description of the tip
improved for the purpose of obtaining reliable numerical
timates of the degree of circular polarization. These res
are discussed in Sec. IV.

II. THEORY

In this section we obtain an expression for the circu
polarization of light emitted when an STM tip scans a ma
netic material. The calculation is divided into five parts.~A!
We first describe the experiment and express the resul
terms of Stokes parameters.~B! The electromagnetic fields in
the tip region are related to the fields at the detector.~C! A
model for the tip is introduced which makes the proble
tractable.~D! The local field outside the tip is related to th
tip polarization, in the presence of a magnetic substrate.~E!
The different contributions are assembled and we obta
theoretical expression for the changes in the circular po
ization due to a change in the direction of the applied m
netic field.

A. Theoretical expression for MCD

In this section we relate the MCD to the field amplitud
at the detector. The experiments by Va´zques de Parga an
Alvarado4 and Pierceet al.7 used the longitudinal configura
tion, i.e., the applied magnetic field is parallel to the plane
incidence and in the surface plane of Co~0001! @thin film
grown on Au~111!# and Fe~001! ~whisker!, respectively.
Light was detected at an angle of 30o measured from the
surface and tungsten tips were used in both experiments.
emitted radiation showed circular polarization whi
changed when the applied magnetic field was revers
Whereas Va´zques de Parga and Alvarado4 used a fixed quar-
ter wave plate and carry out the analysis by a linear polari
Pierceet al.7 use a rotating quarter wave plate and a fix
linear analyzer. In both experiments control measureme
were performed on clean Au~111! samples and yielded n
change of the polarization of the emitted light uponreversal
of the external magnetic field. The background due to g
metric details of tip-sample junctions such as those discus
in Refs. 8 and 9 and any residual dichroism of the view p
of the UHV system were removed by reversing the mag
tization of the sample.

The results of the two groups were very different. Pie
et al.7 found no magnetization dependent circular polari
tion within an experimental uncertainty of62% whereas
Vázques de Parga and Alvarado4 found values of the orde
5–10 %. An earlier experiment using a Ni tip, thus injecti
spin-polarized electrons, and a Ni polycrystal sample a
showed a large MCD upon reversal of the magnetization
the tip.10
.
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Expressing the degree of polarizationr6 of the emitted
light in terms of Stoke’s parameters we have

r12r25
S3

12S3
2

S0
. ~1!

The superscripts onS3 andr indicate whether the magnet
zation is parallel (1) or antiparallel (2) to the surface pro-
jection k, of the photon wave vector. Following the defin
tion given by Jackson11 and concentrating onr1, left-
circular polarized light~positive helicity! has the polarization
vector ê15( p̂2 i ŝ)/A2, whereas for right-circular polariza
tion ê25( p̂1 i ŝ)/A2, where, see Fig. 1,ŝ5 x̂ and p̂5 û are
s- and p-polarization unit vectors. In terms of the electr
field Es,p

T at the detector caused by the source at the tip~T!,
the Stokes parameters are

S0[u ê1* •Es,p
T u21u ê2* •Es,p

T u25uEp
Tu21uEs

Tu2

and

S3
1[u ê1* •Es,p

T u22u ê2* •Es,p
T u2522 Im @Es

TEp*
T#.

As a result,

r1522 Im F Es
TEp*

T

uEp
Tu21uEs

Tu2G'22 Im FEs
T

Ep
TG , ~2!

where the last approximation follows becauseuEs
Tu is nor-

mally much smaller thanuEp
Tu for the particular setup we ar

considering. Hence, the experimentally measured quantit

r12r2'2 Im F2
Es

T~detector!

Ep
T~detector!

G2~M→2M !. ~3!

The basic physics behind these equations is that tunne
electrons undergoing inelastic events via spontaneous e
sion produce a radiating field in the vicinity of the tip. Th
leads primarily to emission ofp-polarized light, but when
reflected in the surface of the magnetic sample it also gi
rise to a small field component in a direction parallel to t
surface due to the Kerr effect. We have thus expressed
measured MCD in terms of the field amplitudes at the det
tor. To facilitate the ensuing calculations, we will next rela
these tip-induced fields in the detector region to complem
tary fields generated by sources at the detector.

B. Reciprocity theorem

In this subsection we use the reciprocity theorem to ref
mulate Eq.~3!. The electrons tunneling inelastically betwee
tip and sample can emit photons and are a source of ele
magnetic radiation. This radiation couples to tip and sam
and is finally detected far from the tip. We have previous
found12 that it is convenient to use the reciprocity theorem
classical electrodynamics13 in such a situation because it a
lows the radiated field to be approximately determined b
nonretarded calculation if the wavelength of the emitted lig
is large compared to the relevant tip extension. This theo
essentially states that the result of a measurement is
changed if the source and field points are interchanged. H
the reciprocity theorem can be written as
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(
j
E dVEj

T~x! Jj
D~x!5(

j
E dVEj

D~x!Jj
T~x!, ~4!

wherej denotes the componentsx, y, andz. The currentJT(D)

at the tip~detector! is the source for the electromagnetic fie
ET(D).

Equation~4! is valid for media with time-reversal symme
try. However, a magnetic material does not fulfill this co
dition and one has to use a modified reciprocity theore13

whereby Eq.~4! can still be used provided the true mediu
is replaced by its complementary medium~one with reversed
magnetic field!. If the dielectric tensor of the real medium
e i j , then the complementary medium has a dielectric ten
e i j

c which is the transpose ofe i j ; e i j
c 5e j i . The dielectric

matrix has the form

e i j 5S eS~v! e1cosf 2e1sing sinf

2e1cosf eS~v! e1cosg sinf

e1 sing sinf 2e1cosg sinf eS~v!
D ,

~5!

where the notatione1(v)[ iQeS(v) is sometimes used with
Q being the so called magneto-optical constant andeS(v) is
the substrate dielectric function. The anglesf andg specify
the direction of the applied magnetic field with respect to
surface normal and the plane of incidence. We see that
complementary medium corresponds to changing the sig
the off-diagonal components.

To a high degree of accuracy, the current between the
and sample is spatially well-localized and perpendicular
the substrate. Thus we write

Jj
T~x!5 ẑJo~r,z!, ~6!

whereẑ is normal to the surface, pointing inwards. The re
tive independence ofEz

D on position in the surface-tip regio
has been verified by numerical calculation14 and is also a key
feature of the models used in this paper. We can take ou
average value ofED in the region between tip and samp
and write the right hand side of Eq.~4! as

Ez
DE dVJo~r,z![ j oEz

D . ~7!

Ez
D is the perpendicular component ofED, with respect to the

surface plane, i.e., in thez direction. The electronic curren
from the STM flows primarily in the normal direction wit
respect to the surface, thus only a perpendicular compo
of a ‘‘detector-generated’’ field can couple to that tunneli
current.

On the left hand side of Eq.~4!, we insert a current sourc
with two components

JD~x!5n̂j nd~x2xD!, ~8!

wherexD is the detector position andn̂ corresponds to eithe
the directionŝ or p̂. Notice that these currents generate tw
differentEz

D , which we write asEz
n in what follows (n5s or

p). Equations~4!, ~7!, and~8! yield

En
T~detector! j n5 j oEz

n . ~9!
or
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Combining Eq. ~9! with Eq. ~3! and also including the
complementary-medium sign change we obtain

r1.2 ImF Ez
s/ j s

Ez
p/ j p

G52 ImF Ez
s/Es

inc

Ez
p/Ep

incG ~10!

andr2 is r1(M→2M ). In the last line we have replace
j s,p by the corresponding incoming field strengthsEs,p

inc since
s polarization andp polarization represent two orthogon
polarization states. Thus the reciprocity theorem make
possible to express the tip-generated field at the detector
sition @En

T(detector)# as the fields in the tip region generate
by incomings- andp-polarized waves.

C. Determination of fields at STM tip

In this section we model the STM tip in such a way as
include the main physical effects and to allow the develo
ment of a formalism for determining the fields at the tip. T
system of tip and sample is a difficult one to treat for seve
reasons. Even if the tip was perfect, in the sense of havin
well-characterized geometrical shape, the resulting elec
magnetic field problem has relatively low symmetry. Cons
quently, we model the tip as a polarizable sphere of radiuR,
with a scalar polarizabilityao(v), situated a distanced5R
1D from a surface. Then we replace the sphere with a
pole atd. In this way we include the relevant physics, su
as a relatively constant field in the region between tip a
sample, while making the problem tractable. Since the cir
lar polarization is a ratio between two quantities, we ho
that a simpler model can capture the main features of
emitted light. A dipole model was also used to study t
polar Kerr effect by Kosobukin15 in the context of near field
optics. In Sec. III we improve upon this by using the fu
sphere in the calculations. We consider the nonmagnetic s
ation in this section and introduce the magnetic substrat
Sec. II D.

Consider a sphere centered atd5~0,0,2d! where2d is
the position of the sphere outside a metal surface whose
tical reflection can be described in terms of its Fresnel refl
tion coefficientsrs and rp for s-polarized andp-polarized
light, respectively. The tip~sphere! above the surface isre-
placed by a point polarizable dipole with polarizability
ao(v). The total electromagnetic field at the dipole positi
E(d,v) can be divided into two partsEext andEt:Eext is the
solution to Maxwell equations with an incident electroma
netic field and no tip present whileEt is a solution when we
have no incoming electromagnetic field but the induced fi
at the tip plays the role of asourceterm. Assume the poin
dipole has an induced dipole momentP5(Pi ,P'). The so-
lution to theEt problem can be simplified if we decompos
the induced field at the tip in Fourier components paralle
the surface~k! and note that they play the role of incomin
electromagnetic fields analogous to the situation in theEext

problem~however, we have to sum over all possible para
wave vector components to get the total field!. The ~near!
field from a dipole can be Fourier decomposed according

E~x,v!5E d2k

~2p!2
E~k,z,v!eik•x, ~11!
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whereE(k,z,v) is the analog to an ‘‘incoming’’ electromag
netic field. In our case the lowest order magnetic compon
is smaller than the electric field by a factorvd/c!1. The
total field from the dipole and its image16 is expressed in
components parallel and perpendicular to the surface as

Ei
t~k,z,v!5 ip@Ei

oeipz1~rsT̂Ei
o2rp~12T̂!Ei

o!e2 ipz#
~12!

and

E'
t ~k,z,v!52 ik•Ei

o~eipz1rpe2 ipz!, ~13!

where rs and rp are the reflection coefficients fors- and
p-polarized light scattered from the surface. In Eqs.~12! and
~13! we have introduced

Ei
o5

2p

p
eipdF2kP'1pPi1

k2

p
T̂PiG ~14!

and the transverse projection operator in the surface plan
T̂512 k̂k̂, where k̂ is a unit vector alongk. Furthermore
p21k25q25v2/c2 for the wave vectorq5~k,p! of the in-
coming field. In order to use the reciprocity theorem abo
we expose the surface and the tip to an incoming electrom
netic fieldEinc. In the absence of the tip the total field wou
be Eext5Einc1Erefl, whereErefl is the reflected field. Upon
introducing the dipole, it will develop an induced polariz
tion

P~d!5ao~v!@Eext~d!1Et~d!#, ~15!

whered5~0,0,2d! is the position of the dipole andEt(d) is
the image field of the polarized tip due to the presence oP.
One can show that16 ~see also Appendix A!:

Et~d!5F iPi1F'P'ẑ ~16!

for P in the surface plane (Pi) or perpendicular to it (P').
We have defined the feed-back, or image functions

F i5
1

2E0

`

dkk
e2ipd

2 ip
@q2rs~k,v!2p2rp~k,v!# ~17!

and

F'5E
0

`

dkk3
e2ipd

2 ip
@rp~k,v!# ~18!

after performing an angular integration in the surface pla
The non-retarded limit forF i andF' is obtained by letting
c→` with the result thatp is replaced byik.

Equation~15! is a self-consistency condition on the in
duced dipole moment representing the tip. Solving forP we
obtain

Pi5
ao~v!

12ao~v!Fi
Ei

ext~d!, ~19!

where i 5i and'. The denominator in Eq.~19! can be in-
cluded with the field to form an effective field acting on th
unperturbed tip~dipole! or it can be included with the bar
polarizabilityao to form an effective polarizability. For spe
cial frequencies, the coupled system exhibits resonan
when Re(aoFi)51 and Pi can be very large. An explici
nt

is

e
g-

e.

es

demonstration of this is found17 for a sphere outside a sur
face. Combining Eqs.~15! and~16! we obtain the total field
at the dipole position

Etot~d!5P~d!/ao

5Eext~d!1Et~d!

[Eext~d!1GiEi
ext~d!1G'ẑE'

ext~d!, ~20!

whereGi ,'Eext is the field at the tip, due to the image of th
tip produced byPi ,' . We have introduced an image facto
Gi defined as

Gi ,'5
ao~v!F i ,'

12ao~v!F i ,'
. ~21!

For a substrate characterized by a frequency dependen
electric functioneS(v) we find in the nonretarded limit

F'52F i5
1

4d3

eS~v!21

eS~v!11
. ~22!

In Eq. ~21!, ao contains information about the dipole res
nances andF i ,' contains information about the surfac
~sample! resonances (eS1150 corresponds to surface pla
mons!. From Eq.~21! we see how the tip and sample coup
to yield new eigenmodes at the poles ofGi ,' , and also a
possible field enhancement. In this respect our model c
tains all the features of more refined calculations for
STM configuration.14 For the dipole~tip!, we use the polar-
izability for a sphere of radiusR and dielectric function
eT(v):

ao~v!5R3
eT~v!21

eT~v!12
. ~23!

In this way one can also include a more accurate dielec
response of the tip, e.g., using measured values foreT . The
factor 2 in the denominator is actually (2111/n) wheren is
the so called depolarization factor. Thus we could a
mimic different tip shapes by choosing different values ofn.

In the following discussion we retain Eq.~20! as a generic
form for the resulting field at the tip position when an incom
ing field is incident on the tip and the sample. Notice a
that the only boundary condition matching is done in t
absence of the tip. After this the self-consistency condit
for the induced dipole moment@Eq. ~15!# adjusts the total
field strength appropriately.

D. Local field near tip with magnetic substrate

In Sec. II B we related the fields at the detector to t
fields of the inverse problem where light is scattered fro
the tip. In the previous section we showed how the incom
field is affected by the presence of a tip outside a nonm
netic solid. Furthermore, we expressed the fields in term
the total field outside the substrate in the absence of the
Eext(d) in Eq. ~20!. Now we will calculateEext(d), and also
consider the changes in the reflected dipole field, in the p
ence of amagneticsample. We first address the field felt b
a tunneling electron that undergoes an inelastic event lea
to the light emission.
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In the previous section we calculated the induced po
ization at the tip in a self-consistent manner and obtained
field at the tip position itself. A tunneling electron will no
only feel the incoming field and the reflected field of t
incoming light, but the tip-induced image field as well as t
direct dipole field from the tip. In the region between t
actual tip and substrate these fields vary only slightly si
the dipole is far away from the surface,R@D. We can write
the field acting on a tunneling electron as (i i ,'):

Ei5FoPi5Foao~11Gi !~11r i !Ei
inc , ~24!

where all fields represent average values in between tip
sample. Fo is a the dipole factor which gives the fiel
strength for a given polarizabilityP. Notice that if we have
no surface presentE5Fo,directaoEinc, whereFo,direct is the
direct part ofFo . We see that (11G) plays the role of a
field enhancing factor for the incoming and scattered elec
magnetic fields from the surface (11r)Einc. ao is a property
of the tip,G depends on both the sample and the tip, andr is
a property of the sample.

To determineP we first have to calculate the reflecte
field from a magnetic surface and such a reflection invol
the magneto-optic Kerr effect. For general angles betw
applied magnetic field, surface plane and plane of incide
there is an excellent treatment by Zaket al.18 which is very
useful when dealing with light reflection from a magne
solid. For a general magnetic configuration the proper fo
of the dielectric matrix was given in Eq.~5!. The off-
diagonal elements of this tensor carry the information ab
the Kerr effect. The origin of the nondiagonal components
a coupling between the spin of the electrons in the solid
their orbital momentum due to the atomic potentials~spin-
orbit coupling!. The first theoretical calculations of this e
fect were carried out by Hulme19 and Argyres.20 Equation~5!
assumes that the dielectric tensor is diagonal whene1(v)
50 ~this approximation can be relaxed but it does not infl
ence our final conclusions!.

For the applied magnetic field in the surface plane we
use Eq.~5! for the general dielectric tensor withf5p/2 and
one angle (g) suffices to specify the direction ofM with
respect to the plane of incidence. The dielectric matrix in
~5! then simplifies to

e i j 5S eS~v! 0 2e1~v!sing

0 eS~v! e1~v!cosg

e1~v!sing 2e1~v!cosg eS~v!
D .

~25!

We use this result in the Zak matrix multiplication metho
together with an expansion to first order ine1(v), since the
off-diagonal elements are small compared toeS(v)
@ ue1(v)/eS(v)u!1#. However, these matrix elements pr
vide a coupling betweens polarization andp polarization
leading to a nonzero Kerr rotation. Fors-polarized incident
light ~alongx direction!, Es

inc , our analysis gives the reflec
tion coefficient fors-polarized light to lowest order ine1(v),
as

rs5
p2pS

p1pS
1O~e1

2! ~26!
r-
e

e

nd

-

s
n
e

t
s
d

-

n

.

,

which is the standard Fresnel result.11 p5Aq22k2 and for
q.k,k5q sinu with u being the angle of incidence. Fork
@q,p→ ik. pS5Aq2eS(v)2k2, with eS(v) defined above.
Finally q5v/c, wherec is the light velocity. Apart from the
direct reflection ofs-polarized light there is a small but cru
cial conversion froms- to p-polarized light with a reflection
coefficient

rps5e1~v!
kpq

pS~p1pS!~eSp1pS!
sing1O~e1

2![rLsing.

~27!

It is proportional to e1(v) since it comes from the off-
diagonal response. For largeeS ,rps}e1 /eS

2 . With Zak’s
field conventions, Eq.~27! corresponds to a reflected fiel
amplitude,2rpsEs

incsinu, in the z direction. It is clear from
Eq. ~27! that a general direction of the applied magnetic fie
in the surface plane corresponds to replacinge1(v) in the
strictly longitudinal configuration (g5p/2) by e1(v)sing
for the s-polarized case. Changing the direction ofM (g
→g1p) changes the sign ofrps as it should.

Repeating the same analysis as above forp-polarized in-
coming light we find, to lowest order in the off-diagon
elements:

rp5
eSp2pS

eSp1pS
1rTcosg1O~e1

2! ~28!

with

rT[
22e1~v!pk

@eS~v!p1pS#2
. ~29!

The corresponding reflection coefficient forp- to s-polarized
conversion isrsp52rps . The first term in Eq.~28! is the
standard Fresnel reflection coefficient for a nonmagn
solid.11 For later use we need the nonretarded limit of E
~28! and ~29!, viz.:

rp
o5

eS~v!21

eS~v!11
1rT

ocosg1O~e1
2!, ~30!

where

rT
o5

2i e1~v!

@eS~v!11#2
. ~31!

The first term in Eq.~30! is the classical image factor for
solid with dielectric functioneS(v).

Making use of the formalism of Zaket al.,18 we find that
for an irradiated magnetic surface we can make the follow
replacements with respect to the nonmagnetic situation:

rs→rs1rsp[rs2rLsing ~32!

and

rp→rp1rps[rp1rLsing1rTcosg. ~33!

rL is defined in Eq.~27! andrT is defined in Eq.~29!.
The change in reflection factors for a magnetic surfa

compared to the nonmagnetic situation will also affect
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reflected field from the tip. We are interested in the near fi
and therefore take the nonretarded limit ofrL ; rL

o :

rL
o5

qe1~v!

2k@eS~v!11#
~34!

to lowest order. Notice thatrp has a finite value@rp
o

1rT
ocosg, cf. Eq. ~30!# in this limit and thatrs vanishes as

O@(q/k)2#. In what follows, we neglectrL
o}q/k compared

to rT
o sincek@v/c in the nonretarded limit. Repeating th

previous treatment for a magnetic material one finds@by let-
ting rs and rp be transformed according to Eqs.~32! and
~33!# that Eq.~16! is replaced by~see Appendix A!

Ei
loc~d!5F iPi2FTP'~ ẑ3M̂ ! ~35!

and

E'
loc~d!5F'P'1FTPi•~ ẑ3M̂ !, ~36!

whereM̂ is a unit vector in the surface plane in the directi
of M and ẑ is normal to the metal and directed towards
The coupling factor due to the off-diagonal response of
mediumFT is given by~nonretarded limit!

FT[
1

2i E dkk2rT
o~k,v!e22kd5

1

4d3

e1~v!

@eS~v!11#2
~37!

using rT
o from Eq. ~31! in the last line. The physics behin

the structure of the above equations is the following. A p
pendicular dipole@Eq. ~35!# provides an electromagneti
field which is reflected in the surface and gives an indu
electric field and dipole component parallel to the surfa
~due to Kerr response, throughFT) and perpendicular to the
magnetizationM . A parallel dipole likewise is reflected an
provides an induced perpendicular field and dipole, due
FT . If both M andPi are parallel there is however no suc
contribution.

E. Theoretical results

We have now developed all the necessary ingredients
calculating the circular polarization from Eq.~10!. First con-
sider the case of incidents-polarized light at an angleu. A
field Es

incŝ ~along thex direction, ŝ5 x̂) sets up a paralle
polarization of the tip

Pi5ao@~11rs!Es
incx̂1F iPi2FTP'~ ẑ3M̂ !#. ~38!

Equations~15! and ~35! have been used to derive Eq.~38!.
There is also a perpendicular polarization

P'5ao@2sinurps
(2M )Es

inc1F'P'1FTPi•~ ẑ3M̂ !#.
~39!

In the first term we have indicated that the conversion co
ficient rps is now, due to the exact form of the reciproci
theorem, to be evaluated in a situation which is the sam
the one considered above if we change the sign ofM. The
Kerr coupling between the induced dipole moments of the
is included through the coupling functionFT . In Eq.~39! the
first term is thez-component Kerr field set up by the incom
ing s-polarized light. The second term is the image from t
d

.
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d
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or

f-
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p

e

tip-induced polarization perpendicular to the surface. Fina
the third term is the image from the parallel induced dipo
set up by the incoming s-polarized wave@Eq. ~38!# which is
converted to a perpendicular component by the nondiago
response of the substrate. The latter is described throughFT
which is given above. NeglectingFT in Eq. ~38!, substituting
the resulting expression in Eq.~38! for Pi into Eq. ~39! and
using Eqs.~15!, ~20!, and~21! gives the field experienced b
an electron between tip and sample to lowest order inFT @cf.,
Eq. ~24!#:

Ez
s5~11G'!~aoFo!@rLsinu2~11rs!GiK~v!#Es

incsing
~40!

due to the incoming fieldEs
inc . We have usedx̂•( ẑ3M̂ )

52sing and defined

K~v![FT /F i5
2e1~v!

@eS
2~v!21#

. ~41!

Note that the right hand side of Eq.~40! is proportional to
sing, the orientation of the magnetization in the surfa
plane; longitudinal polarization providing for the maximu
field strength.

Ez
s in Eq. ~40! is the major part of the average field in th

z direction in the narrow region between tip and samp
created by the incomings-polarized field of magnitudeEs

inc .
The first factor in Eq.~40! is understood as follows; an in
comings-polarized field of magnitudeEs

inc undergoes a Kerr
rotation and a field proportional torL is created in thez
direction. The tip acquires az component of polarization and
radiates. This radiation is also reflected back to the tip by
surface, thus the tip sees its own image giving a contribut
G'rL . The total field at the tip is the original field plus th
image field. Thus,G' is an image~enhancement! factor due
to the polarization of the tip in theẑ direction. The quantity
G' depends on the dielectric properties of the tip, the me
the distance between them, and on the geometry of the

The second term in Eq.~40! is explained as follows. (1
1rs)Es

inc is the field at the tip due to light that falls directl
on the tip plus light that is reflected from the metal surfa
The tip is then polarized in a direction parallel to the surfa
and it radiates. Thiss-polarized radiation is reflected in th
surface and undergoes a Kerr rotation so that it develop
z-component. The termGiK is the analogue ofrL in the first
term. Once a field is created in thez direction it is enhanced
by the factor (11G') in front.

Performing the above calculation for an incomin
p-polarized wave with amplitudeEp

inc and working only to
zeroth order in the off-diagonal dielectric matrix@since both
terms in Eq.~40! above fors-polarized light are already o
first order ine1(v)# we find

Ez
p52~11G'!~aoFo!~11rp!sinuEp

inc , ~42!

where sinuEp
inc is the field that falls directly on the tip an

rpsinuEp
inc is the field at the tip that is reflected from th

surface. The total field is enhanced by the same factor
1G') as discussed above.
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With the use of Eqs.~3!, ~10!, ~40!, ~41!, and ~42! this
leads to the following expression for the magnetic circu
dichroism, to lowest order ine1(v):

r12r254 sing ImF2
rL

11rp
1Gi S 11rs

11rp
D K~v!

sinu G ,
~43!

Note that the light enhancement factorG' from the perpen-
dicular field component drops completely out of the probl
as does the dipolar factor Fo so the ratio does not depend o
where in the junction the light emission takes place. In S
III we will make a more realistic estimate of Eq.~43! for the
magnitude of the magnetic circular dichroism. However,
us already here say that the fact thatG' drops out of the
dipole-model calculation gives one hint to why this mod
as we will see, yields results for the magnetic circular dich
ism that are of the right order of magnitude although the fi
enhancement~described byG') in the dipolar model may be
very different from that calculated in the improved mode

III. IMPROVED THEORETICAL MODEL

Here we outline a calculation of the tip-induced MC
signal within a model geometry where the STM tip is rep
sented by a sphere characterized by a bulk dielectric func
eT(v). This allows for a much better description of the t
polarization. Most of the calculational details are deferred
Appendix B.

We set out to determineEz
s in Eq. ~10!, and this is

achieved via the following four steps.~i! The incoming
s-polarized wave is reflected by the sample surface. T
yields a total fieldEext parallel to the surface.~ii ! That field
in turn drives the model tip so that it sends out a field tha
reflected back and forth between the tip and sample. In
step, we need to extract the part of the field that the tip se
onto the sample.~iii ! Next, due to the off-diagonal elemen
of the sample dielectric tensor, part of the electric field p
allel to, and incident on the sample is converted to a fi
perpendicular to the surface as follows from Eq.~30!. It is
only at this stage that the magnetic properties of the sam
enters the calculation.~iv! In the last step, we calculate th
degree to which the converted electric field is enhanced
side the tip-sample cavity.

Step (i). With ans-polarized wave incident from the righ
~positive y) with electric field Es

inc , the Fresnel formulas
yields a total field just outside the sample surface given

Eext5Es
inc~11rs!5 x̂Es

inc 2p

p1pS
. ~44!

Thus before introducing the model tip into the problem,
have an electric field outside the sample that can be
scribed~in the nonretarded limit! by the scalar potential

fext52xEext, ~45!

whereEext5Es
inc@2p/(p1pS)#.

Step (ii). Once the model tip is introduced into the pro
lem fext alone is no longer a solution of Laplace’s equati
in the region above the sample, instead another contribu
f ind has to be added. Using the appropriate boundary co
r

c.
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tions for theE and D fields at the sample and tip surface
f ind can be determined. In the following, we only want
keep the part off ind that the tip sends onto the sample. A
we will see in Appendix B, this separation can be done b
simple inspection of the solution.

Step (iii). We proceed to find the field that is reflecte
from the sample surface due to the second term in Eq.~30!;
this is the converted fieldEconv. Equation~30! defines a sur-
face response functionx(k,v)5rp

0 , which in terms of inci-
dent and reflected electrostatic potentials is defined as
ratio @2f refl(k,v)/f inc(k,v)#. A further analysis shows
that within a nonretarded treatment there is a local relat
betweenx̂•Eind

inc and ẑ•Econv,

Ez
conv~r!5

2e1~v!

@eS~v!11#2
@ x̂•Eind

inc~r!#. ~46!

Step (iv). In this final step, we calculate the enhancement
the converted field due to the presence of the model tip.
converted field discussed above can be represented in t
of a scalar potentialfc. Again, with the tip present,fc alone
does not solve Laplace’s equation; it must be supplanted
another contributionf ind

c . The calculation determiningf ind
c

is completely analogous to the one carried out in Ref. 12,
only difference being thatfc is the driving ‘‘force’’ in the
present case. Having foundfc and f ind

c , we evaluate the
corresponding electric field on the symmetry axis. This is
tip-induced contribution toEz

s appearing in Eq.~10!.

IV. NUMERICAL RESULTS AND DISCUSSION

We now present numerical results for the dipole mode
the tip based on the expression in Eq.~43!, and for the sphere
model of the tip discussed in Sec. III. We use experimen
optical data for the dielectric functions of the tip and t
sample. The off diagonal matrix elements of the sample
electric function e1(v) are obtained from magneto-opti
Kerr effect measurements. The literature contains many
tailed calculations and measurements of the Kerr effect~no
tip present!. The Kerr effect is an optics effect caused by t
spin-orbit interaction that was discovered in the last centu
The spin-orbit interaction is small in Fe and Co because
orbital momentum in 3d metals is small. It is only in this
century that a microscopic theory has emerged.19–22 The
Kerr effect has recently been calculated by a number
groups for a variety of elements and compounds~see, e.g.,
Gascheet al. and Delinet al.23,24!. Similarly, on the experi-
mental side there have been a number of measurements
those of Krinchik and Artem’ev,25 whose results we use t
obtaine1(v), to the recent results of Welleret al.26 ~see also
Ref. 27!.

Equation~43!, derived for the dipole model, consists o
two terms; the first corresponds to the direct Kerr rotation
the sample and the second to the Kerr rotation of the li
produced by the radiating polarization of the STM tip
previously discussed. We will refer to the two effects as
substrate Kerr effect and the tip Kerr effect.

In order to use the dipole model to make an estimate
the tip-induced Kerr effect we calculateGi from Eqs.~21!,
~22!, and~23!. The distance between the surface and the
~i.e., from the surface to the sphere! is very small compared
to the tip radius so thatd;R in Eqs.~22! and~23! andGi is
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determined by using experimental values for the dielec
functions of the tip and sample. When comparing our res
in Eq. ~43! with the experiments of Va´zques de Parga an
Alvarado4 and Pierceet al.,7 we immediately recognize tha
in the longitudinal configuration that they use,ŝ and M̂ are
perpendicular to each other so that sing51.

Considering the improved~sphere! model, the quantities
entering Eq.~10! were calculated as outlined in Sec. III an
Appendix B. As for the model geometry we here used
tip-sample distanceD55 Å , and the tip radiusR was set to
300 Å .

The results of the calculations for the degree of circu
polarization,r12r2, are presented in Fig. 2. Figure 2~a!
displays the results obtained with a Co sample, while F
2~b! shows the results relevant for a Fe sample. In e
panel, the results for the substrate Kerr contribution~one
single curve! and the tip-induced contribution~four curves!
to the degree of polarization are presented separately.

FIG. 2. Calculated results for the circular polarization for~a! a
Co sample, and~b! a Fe sample. Each of the figures present res
obtained from both the dipole model~dotted curves! and the im-
proved~sphere! model ~full curves!, moreover, results correspond
ing to Ag and W tips~as indicated next to the curves! as well as the
substrate Kerr contribution are displayed in both panels. In
sphere-model calculation we usedR5300 Å for the tip radius and
D55 Å for the tip-sample separation. The sphere model in g
eral gives a larger tip-induced contribution to the degree of po
ization, nevertheless the results obtained with the two differ
methods have many qualitative features in common.
c
ts

a

r

.
h

he

tip-induced degree of polarization has been calculated for
and W tips, respectively, using either the dipole model or
sphere model. The sphere model gives a larger degre
circular polarization than the dipole model, because it i
better description of the local electromagnetic interaction
tween the tip and the sample. In our calculational schem
the tip-induced contribution ultimately results from a Ke
rotation of the electromagnetic fields incident from the
onto the sample. The strength of the incident field is de
mined by how strongly the tip is excited by the incomings
wave as well as by waves reflected back and forth betw
the tip and sample. The sphere model allows for a m
complete treatment of the repeated reflections than the di
model, and therefore gives larger values forr12r2. The
dipole approximation works fairly well because the circu
polarization is given by the ratio ofp ands electric fields.

The effects of the tip-sample interaction is particula
pronounced for a silver tip. An isolated sphere has a dipo
plasmon resonance when the dielectric functioneT(v)
522. For silver, the dielectric function approaches th
value near 3.5 eV. Then the model tip becomes highly
larizable and the feedback mechanism, the waves refle
between the tip and the sample, described above beco
even more effective. In connection with this the electroma
netic response functions that enter our calculations unde
large phase shifts so thatr12r2 changes sign one or sev
eral times.28 The relatively small magnitude of the results f
the MCD is due to the factor (eS11)2 in the denominator in
Eqs. ~31! and ~46!. SinceeS for both Co and Fe is rathe
large this suppresses the MCD signal. From bulk argume
one could have assumed that the circular dichroism sho
be proportional toe1 /eS . However, the presence of the su
face changes the magnitude of both the field going into
solid to be Kerr rotated and the resulting field going o
again; in both cases with a factor 1/(eS11).

It is immediately clear that within the model we hav
considered, there is no explanation for the large values
the degree of light polarization found by Va´zques de Parga
and Alvarado.4 The calculated results are an order of mag
tude or more smaller than the experimental results found
Ref. 4. Even though we use a rather simple model for
geometry as compared with the complicated, and to a cer
degree unknown geometry of a real STM tip, we cannot
how this could make up for the very large difference betwe
experimental and theoretical results. Varying the geome
parameters within reasonable limits~within a nonretarded
formulation the results depend only onR/D) can change the
calculated degree of polarization by a factor of 2 at mo
This is also the case when using different sets of optical d
for the dielectric functions entering. On the other hand, o
calculated results are consistent with the experimental res
found by Pierceet al.7 on Fe samples. Our results are al
small compared to those obtained in the calculations
Majlis et al.,5 some of the reasons for this are given in
footnote.29

Our results are not affected by the assumption of a b
sample compared to the very thin Co~100Å! film on Au4,
provided it can still be described with bulk dielectric dat
Calculations by Mooget al.30 indicate that there are no fun
damental changes in actual numbers for films ranging
thickness between 100 and 400 Å, except a slight enha
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ment of the Kerr parameters. Stray fields from domains
not strong enough to affect the circular polarization.
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APPENDIX A

In this appendix we show how to evaluate the differe
angular integrations required in averaging the local dip
field over a magnetic surface. We first have a look at
integrations for the nonmagnetic case. In this instance
have three types of integrals appearing*d2k(T̂•Ei

o),
*d2k(k•Ei

o), and *d2kEi
o . They can be expresse

in terms of the three integrals*d2kk̂, *d2k( k̂•Pi) and
*d2k@ k̂( k̂•Pi)#. Performing the angular integration we fin
that the first integral is identically zero. Since the seco
integral isPi dotted with the first integral it also vanishe
This leaves the third integral~wherew is the angular vari-
able!:

E dw

2p
k̂~ k̂•Pi!5

1

2
Pi . ~A1!

This result is obtained by expressingk̂ asx̂cosw1ŷ sinw and
k̂•Pi5Pxcosw1Pysinw.

In the magnetic case we have two extra angular factor
the integrand compared to the nonmagnetic case; sing and
cosg. Expressed in terms ofk̂ they are k̂•M̂ and ẑ•(M̂
3 k̂), whereM̂ is a unit vector in the direction of the applie
magnetic field. Repeating the same steps as above we
that all integrals can be expressed in terms of the follow
four integrals: *d2k@ ẑ•(M̂3 k̂)#, *d2kk̂@ ẑ•(M̂3 k̂)#,
*d2k$( k̂•Pi)@ ẑ•(M̂3 k̂)#%, and *d2k$k̂( k̂•Pi)@ ẑ•(M̂
3 k̂)#%. The first and last integrals vanishes since they
odd in k̂. The second integral becomes1

2 ( ẑ3M̂ ) using Eq.
~A1!. For the third integral we obtain

E dw

2p
~ k̂•Pi!@ ẑ•~M̂3 k̂!#5

1

2
Pi•~ ẑ3M̂ ! ~A2!

again expressing the different vectors inx̂ andŷ components
and using Eq.~A1!. With the use of these results it is
straightforward manipulation to arrive at Eqs.~35! and~36!.

APPENDIX B

This appendix explains the calculations outlined in S
III in more detail. To carry them out we use bispheric
coordinates,31 furthermore, to facilitate the connection wit
similar, earlier calculations by us12 and others,32,33 we also
introduce another Cartesian coordinate system (x8,y8,z8) in
which x8 andz8 are reversed compared withx andz, see Fig.
3. The bispherical coordinates (b,a,w8) are defined by
re

n-
s
-

t
e
e
e

d

in

nd
g

e

.
l

z85
a sinhb

coshb2cosa
, x81 iy85

a sina eiw8

coshb2cosa
.

~B1!

Both the sample surface (z850,b50) and the sphere

b5b05 ln@11~D1a!/R#

are constantb surfaces. The length scale is set by the para
eter

a5AD212RD.

Let us embark on the calculations described in Sec.
Step~i! is a straightforward application of the Fresnel form
las that yields an external potentialfext52xEext5x8Eext

@see Eq.~45!# describing the electric field of ans polarized
wave reflected off the sample surface. In the bispherical
ordinates this potential can be written

fext52EextA8aAcoshb2cosa

3(
1

`

e2(n11/2)ubuPn
1~cosa!cosw8. ~B2!

Proceeding to step~ii !, we introduce the induced potentia
f ind , and make the ansatz

f ind52A8aEextAcoshb2cosa

3(
1

`

Fn~b!Pn
1~cosa!cosw8. ~B3!

In the sample (b<0), the functionFn(b) is given by

Fn~b!5~An1Bn!e(n11/2)b, ~B4a!

in the tip (b>b0)

Fn~b!5~Ane(2n11)b01Bn!e2(n11/2)b, ~B4b!

and finally,betweenthe sample and tip (0<b<b0)

Fn~b!5Ane(n11/2)b1Bne2(n11/2)b. ~B4c!

FIG. 3. Schematic illustration of the coordinate system used
the improved model calculation.
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Thus, Fn ,f ind , and therefore the tangentialE field is con-
tinuous across the tip and sample interfaces. From the f
of Eq. ~B4c! it is clear that the field that the tip sends on
the sample is contained in theAn terms; these fields deca
exponentially as one goes away from the tip.

To determine the coefficients,An and Bn we must also
demand that the displacement field perpendicular to
sample and tip surfaces is continuous across these interf
At the sample this means that

eS

]f ind

]b U
b502

5
]f ind

]b U
b501

~B5!

~hereeS is the sample dielectric function!, which yields

Bn52xSAn , ~B6!

where the sample surface response function

xS5
eS21

eS11
. ~B7!

Note that the contribution toD' coming fromfext is already
continuous since the external potential results from using
Fresnel formulas. At the tip-vacuum interface (b5b0), both
f ind andfext must be considered in the boundary conditi
for D' . This yields an equation system involving the coe
ficientsAn

Un
sAn1Vn

sAn211Wn
sAn115Sn , ~B8!

where

Un
s52~2n11!coshb0 ~e(n11/2)b02xS xT e2(n11/2)b0!

1sinhb0 xT~e(n11/2)b02xS e2(n11/2)b0!, ~B9a!

Vn
s5~n21!~e(n21/2)b02xS xT e2(n21/2)b0!, ~B9b!

Wn
s5~n12!~e(n13/2)b02xS xT e2(n13/2)b0!, ~B9c!

and

Sn52xT$e2(n11/2)b0@sinhb02~2n11!coshb0#

1~n21!e2(n21/2)b01~n12!e2(n13/2)b0%. ~B9d!

One arrives at these equations through a procedure th
completely analogous to the one used in ear
calculations.12,32Solving Eq.~B8! for theAn coefficients, we
can determine the tip-induced potentialincident on the
sample,

f ind
inc52A8aEextAcoshb2cosa

3(
1

`

Ane(n11/2)bPn
1~cosa!cosw8. ~B10!

Next, we have to consider the electric field conversion
the sample surface due to the off-diagonal components o
dielectric tensor in Eq.~25!. In the primed coordinate sys
tem, it takes the form
m

e
es.

e

-

is
r

t
he

e i j8 5S eS~v! 0 2e1~v!sing

0 eS~v! 2e1~v!cosg

e1~v!sing e1~v!cosg eS~v!
D .

~B11!

Let us use this to calculate the modified sample surface
sponse function. If a potential

f inc5eik•rekz8e2 ivt ~B12!

acts on the sample, its response yields another contribu
to the potential above the surface

f refl52xS~k,v!eik•re2kz8e2 ivt, ~B13!

wherexS(k,v) is the surface response function. Combini
these two contributions to the potential with a solution
Laplace’s equation inside the sample

f tr5T~k,v!eik•rekz8e2 ivt, ~B14!

and applying the usual boundary conditions, we obtain us
Eq. ~B11! that

xS~v!5
eS21

eS11
1

2i e1sin~g1wk8!

~eS11!2
, ~B15!

wherewk8 is the angle betweenk and x̂8.
The second term in Eq.~B15! is our main concern; it

governs the electric field conversion at the surface of
magnetic sample. In view of Eq.~B15! we write the potential
corresponding to the converted field as

fconv~k!52
2i e1~v!

~eS11!2
sin~g1wk8! f ind

inc~k!. ~B16!

Since we do not know the Fourier transformf ind
inc(k) we

cannot immediately use this relation. However, specializ
to the longitudinal configuration (g5p/2) and using the fact
that on the sample surface,f ind

inc5 f (r)cosw8 (r is the dis-
tance to the symmetry axis!, one can show that withM
5Mŷ8 there is a local relation betweenx̂8•Eind

inc and

ẑ8•Econv,

Ez8
conv

~r!5
2e1~v!

~eS11!2
@ x̂8•Eind

inc~r!#. ~B17!

The calculation leading to Eq.~B17! also shows that both
these fields can be written on the formf 0(r)
1 f 2(r)cos 2w8, where f 0 and f 2 are functions ofr. The
second term obviously cannot induce an electric field p
sessing az8 component on the symmetry axis of the ti
sample system, so we neglect it from now on. The cylind
cally symmetric part of the fieldEconv(r) can be derived
from a potential written as

fc5A2 aAcoshb2cosa (
0

`

Tne2(n11/2)bPn~cosa!.

~B18!

The coefficientsTn in Eq. ~B18! can be calculated with the
aid of Eq. ~B17!. To this end we extract the cylindrically
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symmetric part ofx̂8•Eind
inc by taking the average of its value

on thex8 andy8 axis, respectively, and rewrite these expre
sions as sums of Legendre polynomials only. At the expe
of introducing a more complicated prefactor this yields

x̂8•Eind
inc,x8(y8)5A8Eext

A12cosa

11cosa (
0

`

Cn
x8(y8)Pn~cosa!,

~B19!

where the superscriptx8(y8) indicates whether the field i

evaluated on thex8 or y8 axis. The coefficientsCn
x8 andCn

y8

are given by rather lengthy expressions involving theAn co-
efficients. It is also possible to rewriteEz8

c resulting from the
z8 gradient of Eq.~B18! as a sum of Legendre polynomia
preceded by the same prefactor as in Eq.~B19!. From Eq.
~B17! we then obtain the following equation system det
mining theTn’s:

vnTn221unTn1wnTn125
e1~v!

~eS11!2
Eext~Cn

x81Cn
y8!,

~B20!

where

vn52
1

4

~n21!n

2n21
,

un5
1

4 S 2n112
~n11!2

2n13
2

n2

2n21D ,

and

wn52
1

4

~n11!~n12!

2n13
. ~B21!

The final step amounts to solving for the enhancement of
z8 component of the electric field between the tip and sam
due to the presence of the tip. In fact, to obtain the fi
result for the degree of circular polarization, this calculati
has to be done with two different driving forces. On o
hand, usingfc as a driving force we obtainEz

s to be used in
Eq. ~10!, if instead, as in Ref. 12, the potential correspond
to a reflectedp wave is used to drive the tip-sample syste
we obtainEz

p to be used in Eq.~10!. The two calculations
can be done in parallel. We make an ansatz for the poten
induced due to the presence of the tip in the two cases

f ind
c(p)5A2 aAcoshb2cosa(

0

`

Fn
c(p)~b!Pn~cosa!,

~B22!

where the superscriptsc andp, respectively, indicate that it is
either the converted field or an incomingp wave that plays
the role of driving force. In the sample (b<0),

Fn
c(p)~b!5An

c(p)e(n11/2)(b2b0)1Bn
c(p)e(n11/2)(b1b0),

~B23a!

in vacuum (0<b<b0)

Fn
c(p)~b!5An

c(p)e(n11/2)(b2b0)1Bn
c(p)e2(n11/2)(b2b0),

~B23b!
-
se

-

e
le
l

g
,

ls

and in the tip (b>b0),

Fn
c(p)~b!5~An

c(p)1Bn
c(p)!e2(n11/2)(b2b0). ~B23c!

The external potential in the case of the converted field
given by Eq.~B18!

fc5A2 aAcoshb2cosa(
0

`

Tne2(n11/2)bPn~cosa!,

whereas in the case of an incomingp wave it is

fp
ext52sinu

2eSp

eSp1pt
Ep

incA2aAcoshb2cosa

3(
0

`

~2n11!e2(n11/2)bPn~cosa!, ~B24!

where the first factor}Ep
inc is the resultingz8 component of

the E field just outside the sample surface as obtained fr
the Fresnel formulas.

Proceeding along the same lines as when deriving
~B8!, we first obtain

Bn
c(p)52An

c(p)e2(2n11)b0xS ~B25!

and then the equation systems

UnAn
c1VnAn21

c 1WnAn11
c 5Sn

c ~B26!

and

UnAn
p1VnAn21

p 1WnAn11
p 5Sn

p ~B27!

determining the enhancement due to the presence of th
of the converted field and thep polarized wave, respectively
The coefficients on the left hand side are the same in b
cases,

Un5~2n11!coshb0~12xSxTe2(2n11)b0!

2xTsinhb0~12xSe2(2n11)b0!, ~B28a!

Vn52n~12xSxTe2(2n21)b0!, ~B28b!

Wn52~n11!~12xSxTe2(2n13)b0!. ~B28c!

The right hand side in Eq.~B26! is

Sn
c5xT e2(n11/2)b0$@sinhb02~2n11!coshb0#Tn

1neb0Tn211~n11!e2b0Tn11%, ~B29!

while for the case of an incidentp wave we obtain

Sn
p5sinu

2eSp

eSp1pt
Ep

inc xT e2(n11/2)b0$~2n11!

3@~2n11!coshb02sinhb0#

2~2n22n!eb02~2n215n13!e2b0%. ~B30!

Once all the coefficientsAn
c and An

p have been determine
using Eqs.~B25!, ~B26!, and ~B27!, we can calculate the
resulting electric fields on the symmetry axis as
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Ez8
s

52
coshb2cosa

a F]fc

]b
1

]f ind
c

]b G ~B31!

and

Ez8
p

52
coshb2cosa

a F]fp
ext

]b
1

]f ind
p

]b G . ~B32!

The degree of polarization of the emitted light is found fro
. L

o

v.

ld
vit
tio

p

9

e

r15
S3

S0
'22 ImFEs

out

Ep
outG , ~B33!

so that using the reciprocity theorem, keeping in mind
sign change ofe1 discussed earlier

r12r2'4 ImFEz8
s

Ez8
p G . ~B34!
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